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For (0, 1) scored multiple-choice tests, a formula giving test reliability as a function of the number
of item options is derived, assuming the “knowledge or random guessing model,” the parallelism of the
new and old tests (apart from the guessing probability), and the assumptions of classical test theory. It is
shown that the formula is a more general case of an equation by Lord, and reduces to Lord’s equation if
the items are effectively parallel. Further, the formula is shown to be closely related to another formula
derived from Lord’s randomly parallel tests model.
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1. Introduction

For dichotomously scored multiple choice tests, researchers have long attempted to relate
test reliability to the number of options per item. In theory, an increase in the number of options
should reduce the probability of guessing correct answers, which should increase test reliability.
In early theoretical work, Lord (1944) derived a formula relating test reliability to the number of
options from a consideration of the phi coefficient between items. He assumed the “knowledge
or random guessing model,” equal item difficulties and equal item intercorrelations. Later, Horst
(1954) used Carroll’s (1945) work to relate test reliability to the number of options for a test
where the only error considered was that from guessing, giving “immediate retest reliability.”
Mattson (1965), using Lord’s (1957, 1959) randomly parallel tests model, constructed a table
showing reliability as a function of option numbers, but his table is based on an unobservable
quantity, the mean proportion of answers known in the hypothetical population of items. Basing
his approach on empirical data, Ebel (1969) took the interval between the maximum possible
score and the expected chance score and, assuming the mean was at the midpoint and the standard
deviation was one sixth of the width, employed KR21 to relate test reliability to option numbers.
Later theoretical work (Grier, 1975; Lord, 1977) considered the option number that maximised
test reliability, assuming that for fixed testing time, the product of item and option numbers
would be constant, an assumption Lord acknowledged was likely to be false for many or most
item types.

This paper extends this work in deriving a formula relating test reliability to the number of
options, and showing the relationships between this formula and the work of Lord (1944) and
Mattson (1965). To place this development in context, suppose test developers wish to increase
test reliability, while retaining the same number of items, and desire an approximate reliability
estimate were the number of options to be increased from three to four. One approach would
involve writing an additional distractor to each item of an existing test and trialling it on a large
sample similar to the examinee population. Alternatively, an approximate reliability estimate
could be obtained from theory. In developing this theory, it is not necessary to assume that the
individual test items be parallel (as Lord, 1944, assumed). What is required is that, when guessing
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error is disregarded, the new test as a whole should be parallel in the classical test theory (CTT)
sense to the old test. This parallelism assumption is a very stringent one and is to be discussed in
a later section.

The development below will employ the widely used “knowledge or random guessing
model” (Lord and Novick, 1968, pp. 302–305). This model assumes that the students either
know the answer to an item, or that they randomly guess with a probability of success equal to
the inverse of the number of options. Neither of these assumptions is plausible for all student
responses. While some responses to items may involve definite knowledge by students, other
responses may involve varying degrees of partial knowledge. In addition, the random guessing
assumption implies that all options are equally plausible to someone not knowing the correct
answer. This assumption is unlikely to hold for many items. Indeed, it is commonly held that
as more distractors are required, the more difficult it is to construct additional distractors with
the same degree of plausibility. Although this model cannot take account of a student’s partial
knowledge or misinformation about the options in an item, it has been widely used because of
its simplicity and is the basis for the correction for guessing formula employed by many testing
organizations.

This derivation uses the knowledge or random guessing model and results for CTT and
parallel tests to establish an initial set of results, from which expressions for the mean, variance,
and reliability of the original test are found. These expressions are then used in determining a
formula for the reliability when the number of options is changed. It is then shown that this
formula reduces to Lord’s formula for items that are effectively parallel. It is also shown that in
the randomly parallel tests approach, Mattson omitted a nontrivial term in estimating the error
variance. By including this omitted term, it is shown that a result can be obtained that is closely
related to the formula derived here.

2. The Model

Let Xi f be a random variable denoting the observed score of student i on form f of an in-
finite number of parallel forms, each comprising k items. Let X ′

i f be a random variable denoting
the actual number of answers known, the propensity distribution reflecting errors of measure-
ment in the interaction of person i with form f . On the remaining k − X ′

i f items to which the
student does not know the correct answer, student i is assumed to randomly guess on each with a
probability of a. These k − X ′

i f attempts with a constant guessing probability constitute a set of
Bernoulli trials. Thus the probability distribution for the number of successful guesses of student
i on form f will be the binomial distribution with an expected score of (k − X ′

i f )a and a variance
of (k − X ′

i f )a(1 − a). The number of answers known is a random variable, X ′
i•, over forms, with

the associated guessing probability distributions for each individual varying over forms.
A model for the observed score of student i on form f can be written as

Xi f = X ′
i f + (k − X ′

i f )a + Gi f . (1)

That is, the observed score can be expressed as the number of answers known plus the expected
number of answers guessed plus a guessing error.

2.1. Guessing Error and CTT Results

As the expected number of answers guessed has been incorporated as a term in the model,
the random guessing error, Gi f , has an expected value of 0, taken over the guessing probability
distribution, for a fixed student i and a fixed form f :

EGi f = 0. (2)

The variance of the guessing probability distribution for student i and form f is given by
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σ 2(Gi f ) = a(1 − a)(k − x ′
i f ). (3)

The guessing error variance over persons for a fixed form f may be found by using Theorem
2.6.2 in Lord and Novick (1968):

σ 2(G• f ) = Eiσ
2(Gi f ) + σ 2(EGi f ).

Applying (2) and (3) and dropping subscripts for persons and forms, the guessing error variance
is obtained in terms of the mean of the answers known:

σ 2(G) = a(1 − a)(k − µX ′). (4)

Now on a parallel form of the test, a student may “know” a different number of answers,
due to the different sampling of items. Error scores and true scores for the answers known are
defined below in (5).

E ′
i f ≡ X ′

i f − τ ′
i , where τ ′

i ≡ E f X ′
i f . (5)

These may be compared to the error and true scores in CTT as defined in (6).

Ei f ≡ Xi f − τi , where τi ≡ E f Xi f . (6)

The difference between these two error scores is that (5) has had the random guessing error
removed, but otherwise incorporates all the sources of error associated with (6).

From (2), the expected value of the guessing error distribution will be zero for for every
person i such that τ ′

i f is any specified constant. That is, the regression function Ei (Gi f |τ ′
i f ) has

a constant value of zero. This yields

ρ(T ′• f , G• f ) = 0. (7)

A similar argument also yields

ρ(G• f , E ′• f ) = 0. (8)

As the true scores of the answers known for a person are identical across the different forms,
then (7) also implies

ρ(T ′• f1
, G• f2) = 0. (9)

Two further results require the assumptions of linear experimental independence, E(E ′
i f1

|gi f2) =
E(E ′

i f1
) for all persons and E(Gi f1 |gi f2) = E(Gi f1) for all persons, assumptions that will hold if

the guessing is random. These imply

ρ(E ′• f1
, G• f2) = 0, (10)

ρ(G• f1, G• f2) = 0. (11)

With the expected value definition of true score in (5), the parallelism of the forms and the
assumption of linear experimental independence for different measurements, the CTT model can
be obtained by “construction” rather than assumption (see Lord and Novick, 1968; Zimmerman,
1975, 1976) to give:

Ei E ′
i f = 0, (12)

ρ(E ′• f , T ′• f ) = 0, (13)
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ρ(E ′• f1
, T ′• f2

) = 0, (14)

ρ(E ′• f1
, E ′• f2

) = 0. (15)

2.2. Parallel Form Results for Alternative True Score Definition

In this section, certain results holding for parallel forms in terms of the the usual definitions
of true and error scores (6), are shown to hold for the alternative definitions (5). From (1), (2),
(5), and (6), the two sets of true scores for person i are shown to be related:

τi = τ ′
i + (k − τ ′

i )a = (1 − a)τ ′
i + ka. (16)

Note from (16) that the orthodox true score is larger than the true score of the known answers,
the former being inflated by the expected number of items correctly guessed.

From (1), (5), (6), and (16) it may be shown that Ei f = (1 − a)E ′
i f + Gi f , and hence using

(8) that σ 2
E = (1 − a)2σ 2

E ′ + σ 2
G . If the parallel form relationship µX1 = µX2 holds, then from

(1), (2), and (4), σG1 = σG2 , and thus (17) follows:

If σE1 = σE2, then σE ′
1

= σE ′
2

= σE ′ . (17)

From (16), if σT1 = σT2, then σT ′
1

= σT ′
2

= σT ′ . (18)

From (16), if µT1 = µT2, then µT ′
1

= µT ′
2

= µT ′ . (19)

2.3. Mean, Variance, and Reliability of Original Test

From (1) and (5), dropping the persons and forms subscripts, gives

X = (1 − a)T ′ + ka + G + (1 − a)E ′. (20)

From (20) and using (2) and (12), the mean of X may be written as

µX = (1 − a)µT ′ + ka. (21)

Also from (20), and using (4), (5), (7), (8), (12), and (13), the variance of X is

σ 2
X = (1 − a)2σ 2

T ′ + a(1 − a)(k − µT ′) + (1 − a)2σ 2
E ′ . (22)

Applying (20) to parallel forms, X1 and X2, and from (9)–(11), (14), and (15), the covariance
may be written Cov(X1, X2) = (1 − a)2Cov(T ′

1, T ′
2), which from (18) and the parallel result,

σX1 = σX2 = σX , yields the reliability coefficient:

ρX X ′ = (1 − a)2 σ 2
T ′

σ 2
X

. (23)

2.4. Reliability for a Parallel Test with a Different Number of Options

Another parallel test, Z , derived from the same test specifications blueprint as X , but with
a different number of options per item, has a guessing probability, b. A similar equation to (23)
holds for Z . Combining this with (23) gives

ρZ Z ′ = (1 − b)2

(1 − a)2

σ 2
X

σ 2
Z

ρX X ′ . (24)

An expression for the ratio of the variances in (24) is sought. From the equivalent of (22) for Z,
and employing (17)–(19), gives
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σ 2
T ′ + σ 2

E ′ = 1

(1 − b)2
σ 2

Z − (k − µT ′)
b

1 − b
. (25)

A corresponding expression for X exists, which when combined with (25) to eliminate the left
hand side, gives:

σ 2
Z

σ 2
X

= (1 − b)2

(1 − a)2

[
1 + (b − a)(1 − a)

(1 − b)

(k − µT ′)

σ 2
X

]
. (26)

Substituting (21) into (26) gives

σ 2
Z

σ 2
X

= (1 − b)2

(1 − a)2

[
1 + (b − a)

(1 − b)

(k − µX )

σ 2
X

]
. (27)

Substituting (27) into (24) gives

ρZ Z ′ = ρX X ′

1 + (b − a)

(1 − b)

(k − µX )

σ 2
X

. (28)

In estimating the guessing probabilities, the commonly used but implausible assumption is made
that the probability of guessing is the inverse of the number of options, giving a = 1/n1 and
b = 1/n2. Substituting these in (28) gives

ρZ Z ′ = ρX X ′

1 + (n1 − n2)

n1(n2 − 1)

(k − µX )

σ 2
X

. (29)

Equation (29) gives the desired result, showing the new reliability as a function of the old
reliability and the numbers of options per item. It does not make an assumption about the homo-
geneity of X—the method chosen for the estimation of ρX X ′ would depend on the structure of
X (see the procedures in Feldt and Brennan, 1989). From (29) the predicted change in reliability
will be greater when the initial number of options is relatively small than when it is large. For
example, if λ = (n1 − n2)/(n1(n2 − 1)) and the option number changes from 3 to 4, λ = −0.11,
but if it changes from 10 to 11, λ = −0.01. Thus, it predicts diminishing returns as options are
being added. Secondly, as the test mean approaches the maximum possible score, the effect of
the change in options on reliability becomes minimal. This is in accord with expectations, as a
difficult test would involve a relatively high degree of guessing and would allow scope for the
change in options to affect the reliability. A very easy test, on the other hand, would involve little
guessing, rendering the change in options less influential.

3. Reduction to Lord’s Equation

If the items are homogeneous in content, and are nearly of equal difficulty, then the KR21
coefficient shown below may be substituted:

k − µX

σ 2
X

= k

µX

[
1 − k − 1

k
ρX X ′

]
. (30)

For this formula to accurately estimate reliability, it requires item tau-equivalance as well as equal
item difficulties. But for (0, 1) scored items, equal item difficulties implies equal item variances
which, when considered with the equal item true score variances from tau-equivalence, implies
equal item error variances, if errors are uncorrelated with true scores. Thus this substitution is
justified if the items are effectively parallel. When (30) is substituted into (29), it can be shown
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that (29) reduces to Lord’s (1944) formula. After conversion to the same notation as this paper,
Lord’s result may be written

ρZ Z ′ = ρX X ′

1 + (n1 − n2)

n1(n2 − 1)

[
1 − (k − 1)

k
ρX X ′

]
1

µp

, (31)

where µp is the average item proportion correct.
To explore the relationship between (29) and (31), consider the case where the reliability of

X is estimated by KR20 for both formulas. If the assumption of equal difficulties for each item is
satisfied, then one would expect the two formulas to give the same result. If it is not, the formulas
should differ. Rearranging the usual formula for KR20 gives

k − µX

σ 2
X

= (k − µX )∑
p(1 − p)

[
1 − (k − 1)

k
ρX X ′

]
. (32)

Using the relations
∑

p(1 − p) = k[µp(1 − µp) − σ 2
p] and µX = kµp in (32) and substituting

the result in (29) gives

ρZ Z ′ = ρX X ′

1 + (n1 − n2)

n1(n2 − 1)

[
1 − (k − 1)

k
ρX X ′

]
1[

µp − σ 2
p

(1 − µp)

] . (33)

A comparison of (31) and (33) shows that they will be equivalent if the variance of the item
difficulties is zero. If the latter is not the case, and the reliabilities are estimated by KR20, then
(33) will predict a larger reliability increase if the number of options is increased, and a larger
reliability decrease if the number of options is decreased.

4. Relationship to Randomly Parallel Tests Approach

Mattson’s work is based on Lord’s (1957, 1959) model of randomly parallel tests, in which
a person’s variance error of measurement is given by the binomial formula SE2

i = kφi (1 − φi ),
where φi is the proportion correct that person i obtains in the hypothetical item population.
In seeking an expression for the variance error of measurement over the population of exam-
inees, Mattson simply replaced each proportion correct with the population average to obtain
SE2 = kµφ(1 − µφ). However, as Lord (1957) indicates, this estimate of the variance error of
measurement should be obtained by averaging over all examinees to give SE2 = Ei kφi (1−φi ) =
kµφ(1 − µφ) − kσ 2

φ . This gives an extra term, involving the variance of the proportion correct
in the population of items over the population of examinees. (See also Lord and Novick, 1968,
Equation 11.9.4, for the equivalent expression for observed scores.) With this substitution of the
correct expression for the average variance error of measurement, it will be shown below that
the randomly parallel tests approach almost reduces to (29), with the difference being that the
resulting equation is a function of the unobservable true score mean, rather than the observed
score mean.

For Z , the correct expression for the variance error of measurement in terms of true
scores is found by multiplying φ by the number of items in the previous formula to give
σ 2

EZ
= (1/k)[µTZ (k − µTZ ) − σ 2

TZ
]. Thus the observed variance of Z is given by:

σ 2
Z = σ 2

TZ
+ 1

k
[µTZ (k − µTZ ) − σ 2

TZ
]. (34)

Mattson’s Equation 6 implies σTZ = (1 − b)σT ′ , which, when substituted in (34), gives
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σ 2
Z = (k − 1)

k
(1 − b)2σ 2

T ′ + µTZ (k − µTZ )

k
. (35)

By writing a parallel equation to (35) for form X and rearranging gives

σ 2
T ′ = k

(k − 1)

1

(1 − a)2

[
σ 2

X − µTX (k − µTX )

k

]
. (36)

Substituting (36) in (35) gives

σ 2
Z = (1 − b)2

(1 − a)2

[
σ 2

X − µTX (k − µTX )

k

]
+ µTZ (k − µTZ )

k
. (37)

For form X , Mattson’s Equation 6 also implies µTX = (1 − a)µT ′ + ka. A similar result applies
to form Z . Combining these results gives

µTZ = (1 − b)

(1 − a)
(µTX − ka) + kb. (38)

Substituting (38) in (37) and simplifying gives

σ 2
Z

σ 2
X

= (1 − b)2

(1 − a)2

[
1 + (b − a)

(1 − b)

(k − µTX )

σ 2
X

]
. (39)

Defining reliability as the ratio of true to observed score variance and substituting Mattson’s
result, σTZ = (1 − b)σT ′ , gives

ρZ Z ′ = (1 − b)2σ 2
T ′

σ 2
Z

. (40)

Using a parallel expression for form X and combining it with (40) gives

ρZ Z ′ = (1 − b)2

(1 − a)2

σ 2
X

σ 2
Z

ρX X ′ . (41)

Substituting (39) into (41) and assuming each guessing probability is the inverse of the number
of options gives the result for the randomly parallel model:

ρZ Z ′ = ρX X ′

1 + (n1 − n2)

n1(n2 − 1)

(k − µTX )

σ 2
X

. (42)

It can be seen that (42) is identical to (29) except that the mean of the true scores of X in
the former replaces the mean of X in the latter. In the CTT model with parallel forms, these two
terms would be equal. In the model of randomly parallel tests, however, some forms produced
by the process may be significantly easier or more difficult than the average form—for example,
for an easier form, µX would over-estimate µTX .

5. Extension to a Generalized Spearman–Brown Formula

If the length of Z is altered by a factor L , then the Spearman–Brown formula gives ρY Y ′ =
LρZ Z ′/(1 + (L − 1)ρZ Z ′). Substituting (29) into this formula gives

ρY Y ′ = LρX X ′

1 + (L − 1)ρX X ′ + (n1 − n2)

n1(n2 − 1)

(k − µX )

σ 2
X

. (43)
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This gives the generalized Spearman–Brown formula, which predicts the new reliability after a
change in the length of the test and a change in the number of options. Apart from the assumptions
required in changing the number of options, this formula assumes that the new item set resulting
from the change in length is parallel to the existing set (except for length).

6. Application to Data

Equations (29) and (31) were applied to five tests containing a 4-option multiple choice
component from statewide achievement examinations in NSW, Australia. These were English (20
items), Mathematics (45 items), and Biology, Chemistry, and Physics (each 15 items). Each test
sample had approximately 10,000 respondents. Table 1 shows the means and standard deviations
of the original tests plus some predicted reliabilities.

For example, English containing 4 options had a KR20 reliability of 0.704. Using (29), a
3-option version of the test of the same length is predicted to have a reliability of 0.655, and a
5-option version, a reliability of 0.732. For (31), the respective predicted reliabilities are 0.659
and 0.730. For each data set, the predicted difference between (29) and (31) was small.

Now consider the context described earlier where the test developers have a 3-option test
and are wondering what the reliability would be if an extra option was written for each item. Such
an experiment has been performed by Trevisan, Sax, and Michael (1994), although the focus of
their investigation was different to that of this paper. Equations (29) and (31) were applied to the
published data in Trevisan et al. for this case with the results shown in Table 2 below.

The KR20 reliability of the 45 item 3-option test was originally 0.65. When an extra dis-
tractor was written, the 4-option version was administered to a randomly equivalent group of
examinees, giving a resulting reliability of 0.75. Using the Trevisan et al. published mean and
standard deviation, the estimated 4-option reliabilities were 0.72 for (29) and 0.70 for (31). In
this case, the predicted values have under-estimated the reliability. However, in cases where the
additional distractors written are of lower quality than the existing distractors, the equations may
be expected to over-estimate the reliability.

TABLE 1.
Reliabilities predicted by equations (29) and (31)

Observed Predicted

Equation (31)
Equation (29) (Lord’s Equation)

Course k Mean SD 4 option 3 option 5 option 3 option 5 option

English 20 11.976 3.640 .704 0.655 0.732 0.659 0.730
Mathematics 45 24.598 7.086 .834 0.794 0.856 0.800 0.852
Biology 15 11.706 2.330 .628 0.583 0.652 0.588 0.649
Chemistry 15 9.385 3.123 .741 0.692 0.769 0.698 0.765
Physics 15 8.686 2.866 .646 0.589 0.678 0.594 0.675

TABLE 2.
Reliabilities for 4-option test estimated from 3-option test

Observed Estimated 4 option

Summary Statistics Equation (31)
3 option 3 option 4 option Equation (29) (Lord’s Equation)

Mean = 24.11 .65 .75 .72 .70
SD = 4.88

Data taken from Trevisan et al., 1994
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7. Discussion

For 3 and 4-option parallel tests, one may compare 3-option test reliability to that obtained
if the original options are kept and an additional option per item is written. Trevisan et al. (1994)
argue that this procedure of creating test forms incrementally more closely approximates actual
test construction procedures and is a natural comparison to make. An alternative comparison is
between a 3-option test and an entirely newly written 4-option test, as would result, for example,
if one were comparing last year’s test with this year’s test. In either case, for the formula to
be effective, the new form must be written such that, disregarding guessing error, it is parallel
to the old form (i.e., that Equations (17)–(19) hold). Although it is an empirical question as to
which scenario would be more effective in producing parallel tests, the incremental approach
gives the same subject matter across forms per item and this could result in a closer degree of
parallelism. The difficulties in creating parallel forms suggest that in practice, the prediction is
likely to be very approximate and that there will be many practical situations where the prediction
will be inadequate. On the other hand, the experimental alternative of trialling an existing test
with an additional distractor written for each item has its own practical problems (particularly if
the original test items cannot be kept secure after their administration) that may result in poor
estimation.

Although it may be difficult in practice to satisfy the parallelism requirement, one may ques-
tion how such a formula can be derived without it. A distinction may be drawn between tests that
are already in existence and hypothetical tests that are yet to be built. In the former, the statis-
tics describing the tests are known and thus are available to be used in formulas. However, for
a test that is yet to be built, its exact properties are unknown. When it is built and administered
to examinees, it may turn out to be only essentially tau-equivalent to the existing test, with a
slightly different mean and error variance. These differences are not a deliberate feature of the
test construction process and cannot be predicted in advance. It could be argued that in request-
ing a reliability estimate for a 4-option version of a 3-option test, the developers are implicitly
requiring the condition of “all other things being equal.” That is, if a new test could be built that
was like the previous test in all respects, with the only difference being the number of options,
what would be the change in reliability? If the request implied a model other than parallelism,
such as tau-equivalence, then the estimated difference in reliabilities would become a function
of something additional to the change in the number of options (namely, the difference in the
error variances), which is not what is logically desired, as this difference is an unknown and
unpredictable quantity.

In other approaches to this problem, Lord (1944) assumed that the new test was parallel to
the old one (apart from the number of options). Lord’s derivation was primarily based at the item
level, where his equations assume that each new item was parallel with the old item, apart from
the guessing probability associated with the different number of options. Further, he assumed
that all items in the existing test were of equal difficulty and that all item intercorrelations were
equal, thus assuming parallel items in the existing test. He also assumed the “knowledge or
random guessing model.” Therefore, his derivation was considerably more restrictive than the
one derived here.

The randomly parallel tests approach is not sufficient to provide a formula in terms of ob-
servable values, if only a single existing test is available, as the equation requires the mean of the
true scores. Both the main development in this paper, and the randomly parallel tests approach,
enable Equation (42) to be derived. However, the former, based on the assumption of parallel
tests, enables one to substitute the observed mean as a suitable estimate for the true score mean.
In the latter, the existing test, being formed by the random selection of items, may be harder or
easier than average, giving an observed score mean that may underestimate or overestimate the
true score mean. If data from a series of randomly parallel tests were available, then an estimate
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derived from all these means could be used. The randomly parallel tests approach also uses the
“knowledge or random guessing model” and thus also suffers from the limitations of this model.

In estimating the reliability of X in Equation (29), if the original test can be divided into a
number of parts that are essentially tau-equivalent, then Cronbach’s alpha could be used. Novick
and Lewis (1967), assuming uncorrelated errors between the parts, showed theoretically that
without essential tau-equivalence, alpha tends to underestimate the reliability, while Zimmer-
man, Zumbo, and Lalonde (1993) showed this through computer simulation. However, if the
parts have correlated errors, then Zimmerman et al. demonstrated that alpha may give an inflated
estimate. Komaroff (1997) investigated the simultaneous violation of essential tau-equivalence
and uncorrelated errors, concluding that alpha is sensitive to these opposing biases, and may
either underestimate or overestimate reliability, depending on the strength of each bias. For sim-
ulated data, Raykov (2001) showed the inadequacy of alpha for high degrees of tau-equivalence
violation and advocated a covariance structure model which gave accurate reliability estimates.
If the parts correspond to individual items which are scored (0, 1), then Cronbach’s alpha reduces
to KR20. Feldt and Brennan (1989) point out that this dichotomous scoring inevitably leads to
violation of tau-equivalence, but state that KR20 has not been found to seriously underestimate
split halves coefficients for tests of reasonably homogeneous content.

Equation (29) is perhaps most effective when used to span only one option level (e.g., from
three to four options). However, in practice, a point is likely to be reached where even a span
of one option level gives poor prediction: In predicting from five to six options, apart from the
diminishing returns predicted by the formula, the latter options may be so ineffective in practice
that the actual reliabilities for five- and six-option tests may be virtually the same. One may
speculate that the formula is possibly most effective in a narrow range, perhaps in the range from
three to five options using only a one-option span. Even so, its usefulness would rely heavily
upon the writing of the high quality plausible distractors on which the theory depends.
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