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Using real data comprising responses to both dichotomously scored and constructed response items, this paper 
shows how Rasch modeling may be used to facilitate standard-setting. The modeling uses Andrich’s Extended 
Logistic Model, which is incorporated into the RUMM software package. After a review of the fundamental 
equations of the model, an application to Bookmark standard setting is given, showing how to calculate the 
bookmark difficulty location (BDL) for both dichomotous items and tests containing a mixture of item types. 
An example showing how the bookmark is set is also discussed. The Rasch model is then applied in various 
ways to the Angoff standard-setting methods. In the first Angoff approach, the judges’ item ratings are com-
pared to Rasch model expected scores, allowing the judges to find items where their ratings differ significantly 
from the Rasch model values. In the second Angoff approach, the distribution of item ratings are converted to 
a distribution of possible cutscores, from which a final cutscore may be selected. In the third Angoff approach, 
the Rasch model provides a comprehensive information set to the judges. For every total score on the test, 
the model provides a column of item ratings (expected scores) for the ability associated with the total score. 
The judges consider each column of item ratings as a whole and select the column that best fits the expected 
pattern of responses of a marginal candidate. The total score corresponding to the selected column is then the 
performance band cutscore.
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The last two decades have seen the growth 
and evolution of standard-setting methods in an 
attempt to improve the quality of education. In 
the broadest sense, this involves recasting the 
curriculum in greater detail than was previously 
done so that the standards of achievement re-
quired of students are more explicitly mapped. 
It also involves ensuring that the testing reflects 
this curriculum, and requires the reporting of 
student achievement in a way that relates to the 
standards. This reporting usually makes use of 
performance descriptors, accompanied by work 
samples (where appropriate) describing what the 
typical student can do at each proficiency level. 

In the New South Wales (NSW) Australia ed-
ucation system, an important part of capturing and 
clarifying standards is the production of Standards 
Packages. These comprise a comprehensive set of 
examples of student responses to past examina-
tion questions at each level of proficiency, and are 
disseminated widely to schools and educational 
organizations on compact disks. By studying 
these packages, students can gain a clearer idea 
of the characteristics of the typical answer at each 
proficiency level and are able to more efficiently 
address weaknesses in their preparation for future 
examination attempts. Teachers are also able to 
use them to acquire an understanding of the state 
standards at each proficiency level and can adjust 
their teaching accordingly. 

An important aspect of standard setting is 
establishing cutscores which separate the levels 
of proficiency on the test score distribution. This 
process involves a team of judges, carefully chosen 
to satisfy the needs of the particular educational 
system. These teams require an appropriate mix of 
representativeness and expertise. Two widely used 
methods of standard setting are the Angoff method 
(Angoff, 1971) and its variations, and the more 
recent Bookmark method (Mitzel, Lewis, Patz and 
Green, 2001). The Angoff method was originally 
conceived as a one-stage process, focusing on the 
difficulty of the test items and requiring the judges 
to estimate how students at a particular proficiency 
level would perform on the items. However, several 
researchers have advocated group discussion as 

a means of the team members acquiring a more 
complete understanding of the criteria and reason-
ing used by others in allocating their item ratings 
(Berk, 1996; Jaeger, 1982; Morrison, Busch, and 
D’Arcy, 1994). In addition, other researchers have 
suggested supplying the judges with data and giving 
feedback on their judgments (for example, Linn, 
1978; Norcini, Shea and Kanya, 1988; Popham, 
1978). Thus the Angoff procedure has now typi-
cally developed into a multi-stage process where, 
for example, the judges independently make their 
judgments in Stage 1, discuss their decisions in 
Stage 2 (often with statistical data from Stage 1), 
and confirm their decisions in Stage 3 (often with 
work samples of borderline students).

In contrast with the Angoff method, which 
can be implemented without item response theory 
(IRT) procedures, the Bookmark method was 
designed to use IRT from the beginning. In this 
paper, Rasch modeling will be used to illustrate 
the Bookmark method for a test comprising a mix 
of item types. In addition, this example will be 
used to illustrate three methods of applying Rasch 
modeling to improve the Angoff standard-setting 
procedures. 

Methods

The Data

The applications of Rasch modeling to standard 
setting were conducted on data from the Year 12 
testing program in NSW, Australia. This program 
is primarily attempted by school leaver students, 
generally of age 17-18 years, although it is open 
to, and attempted by, a range of mature-age candi-
dates. Many of these students go on to college. The 
test items were taken from the Economics external 
test, a non-compulsory test containing a mixture 
of multiple-choice items (scored 0 if incorrect, 1 if 
correct) and constructed response items of varying 
mark values. The latter items required an open-end-
ed response varying from a few lines, up to a page, 
depending on the mark value. The test totaled 50 
marks over all items. The test items are summarized 
in Table 1 below. The analyses described below were 
based on a simple random sample of 5000 students 
from the Economics course candidature.
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Rasch Modeling

The Rasch model was developed indepen-
dently of the other IRT models by Rasch (1960), 
with a clear philosophy of measurement in mind. 
In one sense, it may be regarded as the simplest 
member of the family of IRT models, a model 
having only one item parameter—its difficulty. 
In another sense, it is different in that the sought-
for property of specific objectivity is obtained (if 
the data fit), permitting the separation of person 
ability estimation and item difficulty estimation 
(Rasch, 1960, 1966). The model was popular-
ized by Wright and his colleagues (Wright and 
Panchapakesan, 1969; Wright, 1977; Wright 
and Stone, 1979). It was later extended to handle 
polychotomous items by Andrich (1978, 1982, 
1988) for his Rating Scale and Extended Logistic 
models, and by Masters (1982) and Masters and 
Wright (1984) for the Partial Credit model.

In the NSW education system, Andrich’s 
Extended Logistic Model (Andrich, 1988) is 
widely used for test analysis. This model has 
been incorporated into the RUMM software 
package—Rasch Unidimensional Measurement 
Models (Andrich, Sheridan, Lyne, and Luo, 
2000). The RUMM software accepts raw data 
files with the students in rows and the items in 
columns. It produces a person ability estimate for 
each student on the logit scale (log odds units), a 
scale ranging from minus infinity to plus infinity. 
Although this scale stretches from minus to plus 
infinity, in practice most of the values range from 
about –5 to +5 logits. 

For dichotomous items, RUMM produces 
an item difficulty estimate for each item, also on 
the logit scale. For polychotomous items, it again 
produces an item difficulty estimate on the logit 
scale, but also produces item threshold estimates, 
one for each item mark value that exceeds zero. 
The item thresholds, when combined with the 
item difficulty, indicate the ability required to just 
reach the next mark level. A study of the relative 
gaps between these thresholds can give consider-
able insight into how difficult it is for students to 
obtain each mark. 

Model for Polychotomous Items. Consider 
a constructed response item (j) where mj is the 
value of the largest score category on the item. 
Then for students (i) of ability qi, the probability 
that an observed score on the item will equal a 
particular value (x) is given by:
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where dj is the item difficulty and the tjk are the 
centralized item thresholds. The latter are as-
sociated with the ability required to just reach a 
particular score level. 

Using (1), for an item worth 3 marks (mj = 
3) the denominator (D) becomes:
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Table 1
Structure of the test on which the examples are based
 Part Items Mark value

Part A  (20 marks) 20 items (A1 to A20) 1 each

Part B  (30 marks) B1 2
  B2 2
  B3 2
  B4 2
  B5 2
  B6 2
  B7 4
  B8 4
  B9 5
  B10 5



 Standard Setting with raSch ModelS 441

Then the probabilities of obtaining 0, 1, 2 and 3 
respectively are given by:
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Note that the denominator is equal to the sum 
of the numerators. Hence all four probabilities 
sum to 1, as they must. The above equations use 
the centralized thresholds from RUMM, which 
sum to zero. RUMM also produces uncentralized 
thresholds which are equal to the sum of the item 
difficulty and the centralized threshold:

tjk(uncentralized) = dj + tjk. (2)

If (2) is substituted into (1), so that the lat-
ter equation is written in terms of uncentralized 
thresholds, then dj is cancelled out and disappears 
from the equation. RUMM provides a toggle to 
switch between centralized and uncentralized 
thresholds. This paper presents the equations in 
terms of the centralized thresholds. Whenever 
the item difficulties (deltas) are explicitly shown 
in the equations, it implies that the centralized 
thresholds are being used. When the uncentralized 
thresholds are used, the deltas are not part of the 
equations. Naturally the same results are obtained, 
however the equations are represented. 

Model for Dichotomous Items. From Equa-
tion (1), the model simplifies for items scored 
(1, 0). For these item types, only one threshold 
tj1 is required, but this equals zero if it is a cen-
tralized threshold. Therefore (1) reduces to the 
following:
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Thus the probability of getting the item wrong 
(given q) is:
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The probability of getting the item right (given 
q) is: 
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The Relationship between Ability and Total 
Score. The conversion of ability to total score 
for the Economics data is shown in Figure 1. 
An important property of Rasch models is that, 
if the items are compulsory (as in our example), 
then the total score is a sufficient statistic for 
estimating student ability (Andersen, 1973). For 
complete data, it follows that all students on 
the same total score will receive the same abil-
ity estimate, and vice versa. This property does 
not hold for non-Rasch models if item pattern 
scoring is used (which is the optimal scoring 
for such models). With item pattern scoring, the 
ability is determined by the specific pattern of 
the responses—for such models the graph below 
would have a similar shape but would resemble 
a scatterplot rather than a line.

The conversion from total score to ability 
estimate in logits is shown in Figure 2. This 
conversion is nearly linear for most of the mark 
range, but as one approaches the extremes, the 
line curves sharply. Thus, a small total mark dif-
ference near the extremes can result in a relatively 
large difference in ability estimates. For students 
gaining zero marks or full marks, it is difficult to 
justify giving an ability estimate.

Expected Score on an Item. The conversions 
given in Figures 1 and 2 are usually provided by 
reputable software packages, but can be calcu-
lated from Equation (1) as follows. First, (1) can 
be used to estimate the expected score on an item 
for students at ability level q. The expected item 
score is obtained by multiplying the probability of 
gaining each score (from (1)) by the score value 
itself and summing over all possible score values. 
That is, for item j:
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Figure 2. Converting from total score to ability (logits).
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Note that in the dichotomous case, the probability 
of being wrong is associated with a score value 
(k) of zero. For this case, from (6), the expected 
score on the item is simply the probability of be-
ing correct. Having obtained the expected score 
on each item from (6), the expected score on the 
total test can be calculated.

Expected Score on the Total Test. Let Y de-
note the total test score. The expected total test 
score (for a given ability) is obtained by summing 
the expected item scores over the N items. This 
gives:
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The relationship in (7) is similar to that 
graphed in Figure 1, yielding the same integer 
scores, but also giving expected scores that can 
take fractional values. The conversions in Fig-
ures 1 and 2 are often used in Rasch modeling 
applications.

The Bookmark Method

Dichotomous Scoring. The Bookmark 
method will first be discussed for the case of di-
chotomously scored items, as this case is greatly 
simplified under Rasch modeling. The Bookmark 
method uses the Rasch model to arrange the items 
in order from easiest to hardest, these items being 
presented to the judges in an ordered booklet. The 
judges’ task is to work through the booklet from 
the beginning, stopping at the item where the 
borderline student (at a given proficiency level) 
has a probability of success that just falls below 
a criterion probability of success. This criterion 
probability of success is called the response 
probability (RP). It is often set at two-thirds (for 
example, Reckase, 2000; Mitzel et al., 2001) but 
is sometimes set at 0.5 (Wang, 2003). The judges 
place a bookmark just before this critical item. 
In this probabilistic sense, the borderline student 
will tend to be successful on items before the 

bookmark and unsuccessful on items after the 
bookmark.

The ordering of the items in the book requires 
the notion of the bookmark difficulty location 
(BDL). Given the item difficulty dj, the BDL is 
the ability level required so that the probability 
of success on the item is equal to the response 
probability. Although this measure is called a 
difficulty location, it is defined as an ability level, 
the ability and difficulty being measured on the 
same logit scale.

Rearranging Equation (5), and letting P 
denote the probability of success on the item 
we get:
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where ln is the natural logarithm. Substituting RP 
for P and BDL for q gives:
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d
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For example, putting RP=2/3 gives BDLj = dj + 
0.69315. That is: 

BDLj = dj + constant. (10)

For the Rasch model with dichotomous items, 
the BDL differs only by a constant from the item 
difficulty. Thus Bookmarking with dichotomous 
items using the Rasch model is conceptually 
simple. As the BDL is equal to the item difficulty 
plus a constant, it will rank the items in the same 
order as the item difficulty. 

If a response probability of 0.5 is used in 
(9) then: 

BDLj = dj . (11)

Here the BDL is exactly equal to the item diffi-
culty, which further simplifies the process. In this 
case, the concept of the BDL can be dispensed 
with altogether and the explanation of the method 
to the judges can be made solely in terms of item 
difficulties—a much easier process. The latter 
method is sometimes presented in a form known 
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as Item Mapping where the item difficulties are 
shown in graphical form in a histogram, with 
the histogram columns labeled with the item 
numbers. This compact presentation enables the 
judges to view all the data with relative ease. The 
judges must then place a bookmark between two 
columns of the histogram. See Wang (2003) and 
MacCann and Stanley (2006) for examples.

In contrast to the Rasch model, other IRT 
models do not have this desirable property—that 
the BDL ranks the items in the same order as the 
item difficulty. For example, with a 2-parameter 
model, the slope (discrimination) of the item 
characteristic curve may vary substantially from 
item to item. An item with a shallow slope may 
be more difficult for high ability students than an 
item with a steeper slope, even though the former 
may have a lower item difficulty index. 

Finding BDLs for a mixture of Dichoto-
mous and Constructed-Response Items. For 
constructed-response items, a scoring rubric is 
a brief description of what students are required 
to have demonstrated in their answers in order 
to obtain a particular mark. When a constructed-
response item is included in a test, the BDL of 
each mark level (k) on the item is calculated. 
Both the item and the rubric corresponding to 
the particular mark level are then placed in the 
booklet in BDL order. Thus, for a given item, the 
rubric for a mark of 1 may appear fairly early in 
the booklet and the rubric for a mark of 2 would 
appear later in the booklet, perhaps separated by 
several other items.

The BDL for a constructed-response item is 
the ability for which the probability of obtaining 
a mark of k or above is equal to the RP. In short, 
at what value of q does P(X $ k) = RP? Beretvas 
(2004) has derived BDL formulas for various IRT 
models applied to constructed-response items, up to 
a maximum mark of 4, the latter requiring the solu-
tion of polynomial equations of the fourth power. 
Beyond this maximum, she notes that there is no 
algebraic formula that solves a polynomial of the 
fifth or higher power. 

An easier and more generally applicable ap-
proach is to construct a table and estimate q and 
Y through interpolation. As part of this process, it 
is also convenient to calculate the expected score 

on each item and the expected score of the total 
test for each q value.
(i) Construct a table of q values ranging from 

–5 to +5 logits with a step size of 0.01 
logits, say.

(ii) Calculate P(X = k), for each q value, from 
(1).

(iii) Calculate the value of P(X $ k), for each q 
value. For example, suppose the maximum 
possible score on an item is m. Then
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(iv) Calculate the expected score on each item, 
for each q value, from (6).

(v) Calculate the expected score on the total 
test, for each q value, from (7).

(vi) Treat the RP as though it were a value in the 
P(X $ k) data field, and linearly interpolate 
to obtain the estimate of q.

(vii) Treat the RP as though it were a value in the 
P(X $ k) data field, and linearly interpolate 
to obtain the estimate of Y.

Once this method is programmed, it can be 
used for all items, both dichotomous and con-
structed response. For dichotomous items, from 
(5), step (iii) above requires the calculation of 
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The Bookmarking Process. The method 
outlined above was applied to the Economics 
data using a response probability of 0.5, with 
the judges targeting the borderline for minimal 
competence. The BDLs for the lower ability 
range are shown below in Table 2. The number 
following the underscore in the constructed re-
sponse items indicates a particular mark level. 
For example, B5_1 represents obtaining a mark 
of 1 in item B5. 

The heavy dashed line indicates where a 
judge has placed the bookmark—in a probabilistic 
sense, the minimally competent student would 
be just expected to gain 2 marks on item B9 but 
would probably get item A11 wrong. 
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The type of booklet that the judges receive 
is given in Figure 3, which shows a listing of ex-
ample items. The dichotomous items appear once 
in the booklet. A constructed response item worth 
m marks appears m times in the booklet, for the 
mark values 1, 2, …, m. The constructed response 
item itself is listed along with its scoring rubric. 
At each listing, the appropriate part of the rubric is 
shaded to indicate the mark value reached at that 
BDL point. In the example above, a judge has esti-
mated that the borderline candidates would have a 
greater than 0.5 chance (the response probability) 
of getting a mark of 2 on item B9. However, the 
judge believes that the borderline candidates have 
a less than 0.5 chance of getting item A11 correct. 
Hence the bookmark is placed before item A11. 
Referring back to Table 2, this corresponds to a 
BDL of –0.83 and a cutscore of 14.7. 

Each judge would independently place a 
bookmark in the first stage of the standard set-
ting. Then if a second stage were employed, there 
would usually be consultation between judges, 
after which they would be given the opportunity to 
independently change their bookmark positions. 
Once the bookmarks are finalized, the various 
BDLs are averaged across judges and this average 
is then converted to a cut score by the Figure 1 
conversion table. 

Angoff Methods

The Angoff method derives from a brief com-
ment and a footnote by Angoff (1971) in a chapter 
mainly devoted to test equating and calibrating 
issues. He considers whether a hypothetical 
minimally competent student could answer each 
dichotomously scored item in a test. If such a 
person could answer an item, a mark of 1 is given; 
otherwise, 0. The sum of such scores over the 
whole test gives the cutscore for minimal com-
petence. In the footnote, he modifies this slightly 
to consider a group of such persons and the judge 
must estimate the proportion of this group that 
would be correct on an item. This simple system 
has evolved over time into a multi-stage process 
where, after initial independent judgments, the 
judges meet to discuss their decisions and receive 
feedback on the results.

In the NSW system, six judges generally com-
prise a standard-setting panel for a particular course, 
all being experienced teachers from a range of gov-
ernment and private schools. Prior to the standard 
setting, each judge can refresh their mental image 
of the borderline student at a given proficiency level 
through their study of the performance descriptors 
and the exemplars in the Standards Package. The 
judges are asked to base their estimates on a group 

Table 2
Bookmark difficulty locations (BDLs) for Economics (RP=0.5)
 Item BDL (ability) Equivalent mark (/50)

 B5_1 –2.28 4.9
 B8_1 –1.89 6.8
 B2_1 –1.88 6.9
 B9_1 –1.55 8.9
 A10 –1.23 11.3
 A4 –1.22 11.4
 B6_1 –1.10 12.3
 A19 –1.08 12.5
 A3 –1.04 12.8
 B10_1 –1.02 13.0
 A5 –0.94 13.7
 B9_2 –0.83 14.7

 A11 –0.69 16.1
 B7_1 –0.62 16.8
 B8_2 –0.54 17.6
 A20 –0.41 18.9
 A1 –0.37 19.3
 B5_2 –0.36 19.4
 B10_2 –0.14 21.8
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of borderline students, as in the Angoff footnote. For 
dichotomous items, the judges are asked to estimate 
the proportion of the group that would answer the 
item correctly. For constructed-response items they 
are asked to estimate the average score that the group 
would obtain on the item. When the Angoff ratings 
are finalized, they are summed over all the items on 
the test to produce a total cutscore for each judge. 
The final total cutscore is obtained by averaging 
over the results of the six judges. 

There are a number of ways in which Rasch 
modeling can assist the judges in the Angoff 

method. These vary in the amount of direction 
that the judges are given and the way the data is 
displayed. In the next method to be described, 
the process fits well with a traditional Angoff 
multi-stage procedure, with few constraints being 
placed on the judges.

Judge Ratings versus Rasch Estimates. In 
Stage 1 of the Angoff method, the judges form 
their independent cutscores on each of the items 
in the form of proportions, for a given proficiency 
borderline. These proportions are summed to 
give a total cutscore for each judge and averaged 

4

Figure 3

Part A Q5 (1 mark)
Economic growth in developing countries is most likely to be increased through:

(a) Reducing the level of foreign investment
(b) Increasing the level of education
(c) Reducing the level of aggregate demand
(d) Increasing the rate of taxation.

Part B Q9 Students gaining 2 marks (/5)
Define what is meant by the term “inflation” and list actions that the Federal Government
could take to contain inflationary pressures.

Marking Guidelines Criteria Marks

●  Gives a clear and precise definition of inflation.
●  Lists three or more Government actions that would help contain inflation. 5

………………………. 4

………………………. 3

● Conveys some knowledge of the term “inflation” and lists only one action
that the Government could use to contain it.

2

………………………. 1

-------------------------------------------------------------------------------------------
Judge places bookmark here

Part A Q11 (1 mark)
If the Consumer Price Index increases from 150 to 157 in one year, the rate of inflation in
that time interval is given by:

(a) 4.7%
(b) 7.0%
(c) 4.5%
(d) 5.7%.

Figure 3. Items and item rubrics listed in BDL order.
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across the six judges to obtain a single total test 
cutscore. Then from Figure 2, this cutscore can 
be converted into a Rasch ability in logits. This 
Rasch ability can then be used to estimate how 
such students would perform on each of the items 
in the test (the expected scores). 

As noted previously, for dichotomous items 
the expected score on the item (for a given q) is 
simply the probability of getting it correct. This is 
given in Equation (5). For polychotomous items, 
the expected score on the item is given by Equa-
tion (6). This requires the prior use of Equation (1) 
to calculate the probability of gaining a particular 
score point, given q. 

From (5) and (6), a table can be constructed 
comparing the expected score on each item with 
the Angoff ratings of the judges. Both individual 

judge ratings and the mean of these ratings across 
judges can be compared to the Rasch expected 
values. The latter is shown in Table 3. 

The proficiency borderline being estimated 
in this example is the highest band level (Band 6) 
in the NSW system. The total cutscore (average 
of six judges) was 40.48 (out of 50 items) which 
corresponds to an ability in logits of 1.71. As the 
test items varied in their maximum possible score 
(m), the difference between the judge rating and 
the Rasch expected value was divided by m.

This type of table can allow the judges to 
see where they have rated an item as too easy or 
too difficult compared to the Rasch estimates. 
For example, item A11 is underlined to indicate 
a relatively large discrepancy in the multiple 
choice items. The judges thought that about 83% 

Table 3
Judges’ ratings versus Rasch expected scores
 Item cutscores

 Item Maximum Judges  Rasch Difference/m

 A1 1 0.900 0.889 0.011
 A2 1 0.800 0.822 –0.022
 A3 1 0.908 0.940 –0.032
 A4 1 0.917 0.949 –0.033
 A5 1 0.875 0.934 –0.059
 A6 1 0.800 0.781 0.019
 A7 1 0.792 0.784 0.007
 A8 1 0.767 0.743 0.024
 A9 1 0.808 0.832 –0.024
 A10 1 0.900 0.950 –0.050
 A11 1 0.833 0.917 –0.083
 A12 1 0.800 0.773 0.027
 A13 1 0.800 0.804 –0.004
 A14 1 0.700 0.711 –0.011
 A15 1 0.717 0.727 –0.010
 A16 1 0.808 0.819 –0.010
 A17 1 0.725 0.767 –0.042
 A18 1 0.808 0.817 –0.009
 A19 1 0.875 0.942 –0.067
 A20 1 0.817 0.893 –0.076
 B1 2 1.567 1.570 –0.002
 B2 2 1.600 1.847 –0.124
 B3 2 1.583 1.594 –0.005
 B4 2 1.533 1.207 0.163
 B5 2 1.667 1.899 –0.116
 B6 2 1.633 1.699 –0.033
 B7 4 3.200 3.008 0.048
 B8 4 3.267 2.917 0.087
 B9 5 4.000 3.978 0.004
 B10 5 4.083 3.970 0.023
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of borderline Band 6 students would get this item 
right, as compared to the Rasch estimate of 92%. 
If the Rasch estimate is used as the criterion, then 
the judges have over-estimated the difficulty of 
this item for borderline Band 6 students. The 
judges could then examine this item, looking at 
the distractor options to try to understand this 
difference.

On the other hand, on item B4 (out of 2 
marks), the judges have under-estimated the dif-
ficulty of this item for Band 6 students, compared 
to the Rasch estimate. The judges have expected 
the borderline students to average 1.5 (out of 2), 
whereas the Rasch model indicates that such stu-
dents would average about 1.2. The judges could 
examine the marking rubric to try to determine 
why such capable students did not perform quite 
as well as expected.

A table such as Table 3 fits naturally into an 
Angoff multi-stage procedure. It provides statisti-
cal feedback in Stage 2, allowing the judges to 
discuss their results and possibly modify some of 
their decisions, although there is no compulsion 
for them to change their ratings.

Distribution of Total Cutscores. In the previ-
ous method, the judges performed their Angoff 
ratings in Stage 1 and these were then summed 
and averaged over the six judges to determine 
a total cutscore and hence a borderline ability 
estimate. In this method, the judges perform 
their Angoff ratings in Stage 1, but these are not 
summed. Instead, each item rating itself is used 
to determine a total cutscore. When the judges 
estimate the probability of success on a dichoto-
mous item or estimate the average score on a 
constructed-response item, they are, in effect, 
setting an ability level which can be converted 
to a total cutscore.

For example, for a dichotomous item, the 
ability estimate is related to a judge’s probability 
estimates from Equation (8). Let P̂  represent a 
judge’s estimate and substitute it in (8) in place of 
the probability of success. This gives the equiva-
lent ability estimate as follows: 

ˆ1ˆ ln .ˆj
P

P
q d

æ ö- ÷ç ÷= - ç ÷ç ÷çè ø  (13)

This ability is then converted to a total cutscore 
from the relationship shown in Figure 1.

For constructed-response items, a table is 
formed (as outlined previously) in which the 
expected item score has been calculated for every 
value of q. A judge’s estimate of the borderline 
item cutscore is then treated as though it were 
an expected item score and the table is used to 
estimate q by linear interpolation. For example, 
consider a graphical representation of this process 
as shown in Figure 4 below.

Figure 4 shows the relationship between q 
and expected item score for item B10. This item 
has a maximum possible value of 5. It can be seen 
that a judge giving an item cutscore of 4.0 would 
be indicating an equivalent ability of about 1.8. 

In this example, the proficiency level being 
targeted is the highest level, Band 6. In Table 4 
below, the mean of the judges’ cutscores is given 
for every item, along with the equivalent ability 
estimate and the equivalent total cutscore. It can 
be seen that there is a wide range of estimated 
total cutscores, from 27.5 to 45.0. Some of these 
would be regarded as wildly off-target by the 
judges. Yet in the normal Angoff procedure, with-
out statistical feedback, these would be treated 
identically to all the others, as part of a sum of 
all item cutscores. 

A useful way to view the distribution of total 
cutscores is by boxplot, as shown in Figure 5. 
This shows a negatively skewed distribution with 
a long tail, culminating in the outrider, case 25, 
which corresponds to item B5. The median total 
cutscore is 40.1; the mean is 38.6, with the middle 
50% of the cutscores lying between 35.6 and 41.3. 
The presentation of total cutscore equivalents as a 
boxplot gives a vivid way of displaying item esti-
mates that seem to be anomalous. It also indicates 
that there is a distribution of total cutscore esti-
mates, suggesting that there are alternative ways 
of arriving at a final estimate other than the usual 
Angoff procedure of summing the item cutscores. 
For example, one could simply take the median 
of this distribution as a suitable total cutscore. 
This median of 40.1 is reasonably consistent with 
the total cutscore obtained from the orthodox 
Angoff procedure, where each judge’s ratings are 
summed and then averaged over the six judges. 
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Table 4
Total cutscore equivalents for the judges’ item ratings
  Angoff Equivalent Equivalent 
 Question cutscore ability total cutscore

 A1 0.90 1.825 41.3
 A2 0.80 1.564 39.4
 A3 0.91 1.253 36.7
 A4 0.92 1.180 36.1
 A5 0.88 1.005 34.4
 A6 0.80 1.824 41.3
 A7 0.79 1.754 40.8
 A8 0.77 1.841 41.4
 A9 0.81 1.549 39.3
 A10 0.90 0.968 34.0
 A11 0.83 0.922 33.5
 A12 0.80 1.873 41.6
 A13 0.80 1.683 40.3
 A14 0.70 1.655 40.1
 A15 0.72 1.661 40.1
 A16 0.81 1.641 40.0
 A17 0.73 1.488 38.8
 A18 0.81 1.650 40.0
 A19 0.88 0.871 33.0
 A20 0.82 1.084 35.1
 B1 1.57 1.701 40.4
 B2 1.60 0.571 29.8
 B3 1.58 1.682 40.3
 B4 1.53 2.481 45.0
 B5 1.67 0.359 27.5
 B6 1.63 1.464 38.6
 B7 3.20 1.972 42.3
 B8 3.27 2.301 44.1
 B9 4.00 1.741 40.7
 B10 4.08 1.844 41.4

Figure 4. Estimating ability from item cutscore for item B10.
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Under that method, the total cutscore would be 
40.5, as shown in the previous section.

Judges Choose a Set of Expected Scores. In 
this method, the Rasch model is used to provide 
maximum information to the judges, so that the 
standard-setting process can be expedited. Cor-
responding to every total score, there is an ability 
estimate (see Figure 2). For each of these ability 
estimates, the expected score on each item can 
be calculated (see Equation (6)). This data can 
be given to the judges in a table. In such a table, 
the total score values would be the column head-
ings and the rows would represent the items. The 
columns themselves would comprise the expected 
item scores, given the total score. The task of the 
judges would be to select the column that best 
reflects their Angoff ratings over all items. Once 
the column is chosen, the total cutscore is given 
by the score in the column heading. 

For example, consider an Angoff procedure 
where the proficiency level being estimated is 
the highest level, Band 6. Then a table would be 
provided to the judges, showing a range of total 
score columns within which the cutscore would 
be expected to lie. An example of such a table is 

shown in Table 5, with the column that a judge 
has selected being enclosed in a box.

This table includes the total score at the top 
of each column and the equivalent percentile. It 
is probably best to suppress this information ini-
tially, as it may bias the judges’ decisions (see for 
example, Reid, 1991). Before beginning the task, 
the judges would familiarize themselves with the 
proficiency standard through the Standards Pack-
age and refresh their knowledge of the test items. 
Each judge would then select the column that 
best reflects how the borderline students would 
be likely to perform across all items. In such a 
decision, the judges can consider item data simul-
taneously by ranging over a column and checking 
their subjective estimates against the values in the 
column. Undoubtedly there will be cases where 
the judges are surprised at the expected scores 
allocated to some items, relative to those of other 
items in the same column. However, all they are 
after is the best fit to their judgments.

This method would result in a consider-
able savings of time compared to the somewhat 
tedious item-by-item judgment of the normal 
Angoff method. In addition, it provides a way of 

Figure 5. Total cutscore distribution from item cutscores.
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removing the subjectivity of the Angoff ratings. 
The fallibility of such ratings has been remarked 
on in several studies (Bejar, 1983; Goodwin, 
1999; Mills and Melican, 1988; Shepard, 1995). 
As these subjective Angoff ratings are replaced 
by Rasch expected scores, all the judgments are 
consistent, flowing from a clearly stated model. It 
has yet to be tested in practice whether such a pro-
cess would result in greater consistency between 
judges than the usual Angoff method.

The procedure described above provides 
considerable direction and structure to the judges. 
However, the implementation of this method may 
be varied to suit the needs of the educational 
system. An alternative implementation would 
be to have the judges supply independent Angoff 
ratings for a sample of the items before looking at 
Table 5. The judges may be more confident about 
making Angoff ratings on some items than others, 
and may want to focus on the former items. Both 
multiple-choice and some constructed-response 

items could be included in this sample. Each 
judge would enter their initial item cutscores on 
a recording sheet before looking at the Table 5 
data. They would then compare the ratings on 
the recording sheet with the expected scores in 
the table and select the column that best matched 
their ratings.

A third option would simply be to use Table 5 
at Stage 2 in the normal Angoff method. In Stage 
1, the judges would independently work their way 
through the test, estimating cutscores for all the 
items. In Stage 2, they would be given Table 5 and 
asked to discuss their ratings with the other judges 
in the light of the Table 5 data. As a result of this 
discussion they would be given an opportunity to 
revise their ratings. In this approach, the judges’ 
ratings are regarded as the primary data and the 
Table 5 data as secondary. It would be up to the 
judges as to how much they revise their ratings 
as a result of studying Table 5.

Table 5
Expected item scores for each Total Score ability
 Score: 38 39 40 41 42 43 44 45 46
 Percentile: 69.0 73.0 76.7 80.5 84.2 87.8 90.9 93.8 96.2

Qst Max
A1 1 0.85 0.87 0.88 0.90 0.91 0.92 0.93 0.95 0.96
A2 1 0.77 0.79 0.81 0.83 0.85 0.87 0.89 0.91 0.93
A3 1 0.92 0.93 0.94 0.94 0.95 0.96 0.97 0.97 0.98
A4 1 0.93 0.94 0.95 0.95 0.96 0.96 0.97 0.98 0.98
A5 1 0.91 0.92 0.93 0.94 0.95 0.95 0.96 0.97 0.98
A6 1 0.72 0.75 0.77 0.79 0.82 0.84 0.86 0.89 0.91
A7 1 0.73 0.75 0.77 0.80 0.82 0.84 0.87 0.89 0.91
A8 1 0.68 0.70 0.73 0.76 0.78 0.81 0.84 0.86 0.89
A9 1 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.93
A10 1 0.93 0.94 0.95 0.95 0.96 0.97 0.97 0.98 0.98
A11 1 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97
A12 1 0.71 0.74 0.76 0.78 0.81 0.83 0.86 0.88 0.90
A13 1 0.75 0.77 0.79 0.82 0.84 0.86 0.88 0.90 0.92
A14 1 0.64 0.67 0.70 0.73 0.75 0.78 0.81 0.84 0.87
A15 1 0.66 0.69 0.71 0.74 0.77 0.80 0.82 0.85 0.88
A16 1 0.77 0.79 0.81 0.83 0.85 0.87 0.89 0.91 0.93
A17 1 0.71 0.73 0.76 0.78 0.80 0.83 0.85 0.88 0.90
A18 1 0.77 0.79 0.81 0.83 0.85 0.87 0.89 0.91 0.93
A19 1 0.92 0.93 0.94 0.95 0.95 0.96 0.97 0.97 0.98
A20 1 0.86 0.87 0.89 0.90 0.91 0.92 0.94 0.95 0.96
B1 2 1.43 1.49 1.54 1.60 1.65 1.70 1.75 1.80 1.84
B2 2 1.80 1.82 1.84 1.86 1.88 1.89 1.91 1.93 1.94
B3 2 1.47 1.52 1.57 1.62 1.67 1.72 1.76 1.81 1.85
B4 2 1.05 1.11 1.18 1.24 1.31 1.38 1.46 1.54 1.62
B5 2 1.87 1.88 1.89 1.91 1.92 1.93 1.94 1.95 1.96
B6 2 1.61 1.65 1.68 1.72 1.75 1.78 1.81 1.85 1.88
B7 4 2.74 2.85 2.96 3.06 3.17 3.28 3.39 3.49 3.60
B8 4 2.71 2.79 2.88 2.96 3.05 3.15 3.25 3.36 3.48
B9 5 3.74 3.84 3.93 4.03 4.13 4.23 4.33 4.44 4.55
B10 5 3.66 3.79 3.91 4.03 4.15 4.27 4.38 4.49 4.60
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Discussion

This paper has put forward several ways in 
which Rasch modeling can be used in standard 
setting. It has long been noted that the most popu-
lar procedure, the Angoff method, shares a natural 
affinity with IRT procedures with both having a 
common view of a continuum of achievement 
and a probabilistic definition of performance 
on an item (Kane, 1987; van der Linden, 1982). 
The Rasch procedures given here can be used to 
support a normal Angoff multi-stage method, but 
can also be used to radically change the Angoff 
operating procedures. The support to the usual 
Angoff procedures would occur in Stage 2, where 
the judges discuss their Stage 1 decisions in the 
light of statistical data. 

In the method entitled Judge ratings versus 
Rasch estimates, each judge’s Stage 1 decisions 
are summed and the totals are averaged across the 
judges to get a single cutscore. This score defines 
a Rasch ability and this ability is used to estimate 
expected scores on the items. The judges can then 
see the extent to which their ratings differ from 
the Rasch expected scores and can change some 
of their ratings, if desired, following the group 
discussion.

In the Distribution of Total Cutscores meth-
od, a judge’s rating for each item is regarded as 
a probability of success (or as an expected score 
for constructed-response items), and is used to 
calculate the equivalent person ability and hence 
the equivalent total score. A distribution of these 
total scores could be used as Stage 2 feedback 
to the judges to identify those item ratings that 
give wildly inappropriate total score estimates. 
The judges could then revise their ratings on 
these items. Alternatively, the distribution of 
total scores itself could be used to obtain an An-
goff cutscore. Several possibilities are available, 
depending on the viewpoint of the educational 
system. One could test for and eliminate outriders 
and calculate the mean, or calculate a trimmed 
mean, or use some other statistic such as the 
median, to gain a cutscore estimate. These could 
then be averaged across the judges.

The method where Judges choose a set 
of Expected Scores has the potential to greatly 
streamline the judging process. In this approach, 
the Rasch model is used to calculate a set of ex-
pected item scores for every total-score ability 
point. The judges simply choose the column of 
expected scores that best reflects their item rat-
ings. This could be implemented in several ways 
depending on the requirements of the educational 
system. If the judges are quite familiar with the 
items and are confident with their ratings, they 
could quickly “home in” on the appropriate col-
umn and confirm their ratings against the column 
values. Alternatively, the judges could select a 
sample of items that they were confident of judg-
ing and enter a Stage 1 set of independent ratings 
on a recording sheet, before looking at the table of 
expected values. By comparing their ratings with 
the expected values for the sample of items, they 
could then select the appropriate set of expected 
values. Provided an educational system has the 
time to prepare such a table of expected values, 
this method could greatly ease the cognitive load 
on the judges. 

In comparison to the Angoff method, the 
Bookmark method was explicitly designed to 
make use of IRT theory. Under the Rasch model, 
the method becomes very simple if the items are 
dichotomously-scored. In this case, the bookmark 
difficulty location (BDL) is equal to the item 
difficulty plus a constant. Hence the BDL order 
and the item difficulty order are the same for the 
purpose of presenting items in the standard setting 
booklet. If a response probability of 0.5 is used, 
the situation is even simpler. In this case, the 
concept of a bookmark difficulty location (BDL) 
is not required, as the BDL is exactly equal to 
the item difficulty. Thus the process of arranging 
the items in the standard-setting booklet can be 
explained solely in terms of item difficulties, a 
great gain in simplicity and much easier for the 
judges to follow. In addition, for the item mapping 
presentation, this allows the easy representation of 
the items in histogram form, which conveniently 
fits the data on a single page. The judges merely 
have to place their bookmark between the col-
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umns of the histogram, which are labeled with 
the item numbers.

If the Rasch model is not used in the dichoto-
mous Bookmark procedure, the situation becomes 
more complex, as the other IRT methods include 
item discrimination in their models, resulting in 
different slopes for the item characteristic curves. 
These IRT models will not generally arrange the 
items in the same BDL order as the Rasch model 
and the item orders will generally differ from 
model to model. Even within the same IRT model, 
the model may arrange the items in different or-
ders, depending on the response probability being 
considered. The choice of response probability, 
whether 0.80, 0.67, or 0.5, can affect the order-
ing of the items, due to its interaction with the 
different slopes of the item characteristic curves. 
The effect of this on the reporting of standards, 
where items are used as exemplars of the types 
of questions students can typically answer at a 
given proficiency level, seems to be problematic. 
If items are used as exemplars in this way, then 
the response probability should be published with 
the item, as a different response probability may 
result in a different set of items at that proficiency 
(also, see the discussion in Beretvas, 2004).

For constructed-response items, the same 
problems occur for non-Rasch models. However, 
these problems will now occur for Rasch models. 
Within an item, for each score level, there is a 
curve that shows the probability of gaining that 
score or above as a function of ability. These 
curves do not cross within the item. However, 
between items, there is the likelihood that such 
curves could have different slopes, resulting in 
the problems described above. More experience in 
analyzing constructed-response data is required to 
form a clear view of the extent of this occurrence. 
For the data set analyzed in this paper (comprising 
mixed item types), the Spearman’s rho correlation 
between BDLs from an RP of 0.5, and from an RP 
of two-thirds, was 0.990. For a broader spectrum 
of data, it is uncertain how much the rank order 
would typically change over differing response 
probabilities, and whether any controllable char-
acteristics of the constructed response items can 
be identified that are associated with the change 

in rank order. It is also uncertain what impact this 
effect would typically have on the final cutscore. 
For Rasch practitioners in standard setting, this 
is an area where more research is needed to un-
derstand the scope of these problems. 
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